Preparation and X-Ray Structure of the N-Benzyl Derivative of 10-Aza-7,8-dicarba-*nido*-undecaborane(11) (10-PhCH₂-10-N-7,8-C₂B₈H₁₀)

By JAROMÍR PLEŠEK* and STANISLAV HEŘMÁNEK

(Institute of Inorganic Chemistry, Czechoslovak Academy of Sciences, 250 68 Rež, Czechoslovakia)

and John Huffman, P. Ragatz, and Riley Schaeffer*

(Department of Chemistry, Indiana University, Bloomington, Indiana 47401)

Summary A nido-structure for the 10-aza-7,8-dicarba-nidoundecaborane(11) species has been confirmed by an X-ray crystal structure analysis of its N-benzyl derivative.

ALKYLATION of the heteroborane¹ $NC_2B_8H_{11}$ with PhCH₂Br in Et₂O in the presence of KOH gives 10-PhCH₂-10-N-7,8-C₂B₈H₁₀ (I) in 50% yield, m.p. 58—59 °C, b.p. 110 °C at 10⁻² Torr.

Crystal data: compound (I), $C_9H_{17}B_8N$, crystallizes in the non-centrosymmetric orthorhombic space-group $Pca2_1$ $a = 19\cdot23$, $b = 7\cdot25$, $c = 9\cdot23$ Å (at -160 °C), Z = 4. 1541 reflection intensities were collected by the $\theta-2\theta$ scan technique using graphite-monochromated Mo- K_{α} radiation on a Picker FACS-1 automated diffractometer for a crystal grown and mounted in a nitrogen-cooled glass capillary. 1487 reflections were considered non-zero, and were used in the subsequent refinement. The N, C, and B atoms were located using direct methods and the H atoms were located using standard difference Fourier techniques.

FIGURE. Structure of 10-C₆H₅CH₂-10-N-7,8-C₂B₈H₁₀

Anisotropic least squares refinement on the heavy atoms (isotropic refinement of H) gives an overall R-factor of 0.065.

The X-ray results confirm the proposed structure (Figure).^{1,2} Plane 1 [B(2), B(3), B(4), B(5), B(6)] is, within experimental error, parallel to plane 2 [B(9), B(11), N(10), C(7), C(8)]. The crystal lacks a molecular plane of symmetry because of the torsional twist about the CH2-N bond [torsion angle about C(1)-C(9)-N(10)-B(11) = 51.9°]. Plane 3 [C(1)-C(6)] is not perpendicular to plane 2 but forms an 101.9° angle with it and forms a 66.9° angle with the line joining C(7) and C(8). All bond distances and angles appear normal although the N-B(9) bond is 0.03 Å shorter than the N-B(11) bond, perhaps as a result of C(1) of the benzyl ring being closer (by 0.26 Å) to B(11) than B(9).

J.H., P.R., and R.S. thank the National Science Foundation for support.

(Received, 8th September 1975; Com. 1013.)

¹ J. Plešek, B. Štíbr and S. Heřmánek, Chem. and Ind., 1974, 662; Coll. Czech. Chem. Comm., in the press; V. A. Brattsev, S. P. Knyazev, G. N. Danilova, and V. I. Stanko, Zhur. obshschei khim., 1975, 45, 1393.
² J. Plešek and S. Heřmánek, Pure Appl. Chem., 1974, 39, 431.