Preparation and X-Ray Structure of the \boldsymbol{N}-Benzyl Derivative of 10-Aza-7,8-dicarba-nido-undecaborane(11) (10-PhCH2-10-N-7,8- $\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{10}$)

By Jaromír Plešek* and Stanislav Heřmánek
(Institute of Inorganic Chemistry, Czechoslovak Academy of Sciences, 25068 Řež, Czechoslovakia)
and John Huffman, P. Ragatz, and Riley Schaeffer*
(Department of Chemistry, Indiana University, Bloomington, Indiana 47401)

Summary A nido-structure for the 10-aza-7,8-dicarba-nidoundecaborane(11) species has been confirmed by an X-ray crystal structure analysis of its N-benzyl derivative.

Alkylation of the heteroborane ${ }^{1} \mathrm{NC}_{2} \mathrm{~B}_{8} \mathrm{H}_{11}$ with $\mathrm{PhCH}_{2} \mathrm{Br}$ in $\mathrm{Et}_{2} \mathrm{O}$ in the presence of KOH gives $10-\mathrm{PhCH}_{2}-10-\mathrm{N}-$ $7,8-\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{10}$ (I) in 50% yield, m.p. $58-59^{\circ} \mathrm{C}$, b.p. $110^{\circ} \mathrm{C}$ at 10^{-2} Torr.

Crystal data: compound (I), $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~B}_{8} \mathrm{~N}$, crystallizes in the non-centrosymmetric orthorhombic space-group Pca2 $a=19 \cdot 23, \quad b=7 \cdot 25, \quad c=9 \cdot 23 \AA\left(\right.$ at $\left.-160^{\circ} \mathrm{C}\right), \quad Z=4$. 1541 reflection intensities were collected by the $\theta-2 \theta$ scan technique using graphite-monochromated Mo- K_{α} radiation on a Picker FACS-1 automated diffractometer for a crystal grown and mounted in a nitrogen-cooled glass capillary. 1487 reflections were considered non-zero, and were used in the subsequent refinement. The N, C, and B atoms were located using direct methods and the H atoms were located using standard difference Fourier techniques.

Figure. Structure of $10-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-10-\mathrm{N}-7,8-\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{10}$

Anisotropic least squares refinement on the heavy atoms (isotropic refinement of H) gives an overall R-factor of 0.065 .

The X-ray results confirm the proposed structure (Figure)..1,2 Plane $1[\mathrm{~B}(2), \mathrm{B}(3), \mathrm{B}(4), \mathrm{B}(5), \mathrm{B}(6)]$ is, within experimental error, parallel to plane $2[\mathrm{~B}(9), \mathrm{B}(11), \mathrm{N}(10)$, $C(7), C(8)]$. The crystal lacks a molecular plane of symmetry because of the torsional twist about the $\mathrm{CH}_{2}-\mathrm{N}$ bond [torsion angle about $\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{N}(10)-\mathrm{B}(11)=51 \cdot 9^{\circ}$]. Plane $3[\mathrm{C}(1)-\mathrm{C}(6)]$ is not perpendicular to plane 2 but forms an
101.9° angle with it and forms a 66.9° angle with the line joining $\mathrm{C}(7)$ and $\mathrm{C}(8)$. All bond distances and angles appear normal although the $\mathrm{N}-\mathrm{B}(9)$ bond is $0.03 \AA$ shorter than the $\mathrm{N}-\mathrm{B}(11)$ bond, perhaps as a result of $\mathrm{C}(1)$ of the benzyl ring being closer (by $0.26 \AA$) to $\mathrm{B}(11)$ than $\mathrm{B}(9)$.
J.H., P.R., and R.S. thank the National Science Foundation for support.
${ }^{1}$ J. Plešek, B. Stíbr and S. Heřmánek, Chem. and Ind., 1974, 662; Coll. Czech. Chem. Comm., in the press; V. A. Brattsev, S. P. Knyazev, G. N. Danilova, and V. I. Stanko, Zhur. obshschei khim., 1975, 45, 1393.
${ }^{2}$ J. Plešek and S. Heřmánek, Pure Appl. Chem., 1974, 39, 431.

